Autoregressiver Gleitender Durchschnitt C ++


Autoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 2 Von Michael Halls-Moore am 24. August 2015 Im Teil 1 betrachteten wir das autoregressive Modell der Ordnung p, auch als AR (p) - Modell bekannt. Wir führten es als eine Erweiterung des Zufallsmodells ein, um eine weitere serielle Korrelation in finanziellen Zeitreihen zu erläutern. Schließlich erkannten wir, dass es nicht genügend flexibel war, um alle Autokorrelationen in den Schlusskursen der Amazon Inc. (AMZN) und des SampP500 US Equity Index wirklich zu erfassen. Der Hauptgrund dafür ist, dass beide Vermögenswerte bedingt heteroskedastisch sind. Was bedeutet, dass sie nicht-stationär sind und Perioden variierender Varianz oder Volatilitäts-Clustering aufweisen, was von dem AR (p) - Modell nicht berücksichtigt wird. In zukünftigen Artikeln werden wir schließlich die Autoregressive Integrated Moving Average (ARIMA) Modelle sowie die bedingt heteroskedastischen Modelle der ARCH - und GARCH-Familien aufbauen. Diese Modelle werden uns unsere ersten realistischen Versuche zur Prognose von Vermögenspreisen bieten. In diesem Artikel werden wir jedoch die Moving Average der Ordnung q-Modell, bekannt als MA (q) einzuführen. Dies ist ein Teil des allgemeineren ARMA-Modells und als solches müssen wir es verstehen, bevor wir weitergehen. Ich empfehle Ihnen, lesen Sie die vorherigen Artikel in der Zeitreihe Analyse-Sammlung, wenn Sie dies nicht getan haben. Sie können alle hier gefunden werden. Moving Average (MA) Modelle der Reihenfolge q Begründung Ein Moving Average-Modell ähnelt einem Autoregressive-Modell, mit der Ausnahme, dass es sich nicht um eine lineare Kombination von vergangenen Zeitreihenwerten handelt, sondern um eine lineare Kombination der vergangenen weißen Rauschterme. Intuitiv bedeutet dies, dass das MA-Modell solche zufälligen weißen Rauschschocks direkt bei jedem aktuellen Wert des Modells sieht. Dies steht im Gegensatz zu einem AR (p) - Modell, wo die weißen Rauschschocks nur indirekt gesehen werden. Über Regression auf frühere Ausdrücke der Reihe. Ein wichtiger Unterschied besteht darin, dass das MA-Modell nur die letzten q-Schocks für ein bestimmtes MA (q) - Modell sehen wird, während das AR (p) - Modell alle vorherigen Schocks berücksichtigt, wenn auch in abnehmender Weise schwach. Definition Mathematisch ist das MA (q) ein lineares Regressionsmodell und ist ähnlich strukturiert nach AR (p): Moving Average Modell der Ordnung q Ein Zeitreihenmodell ist ein gleitendes Durchschnittsmodell der Ordnung q. MA (q), wenn: Anfang xt wt beta1 w ldots betaq w end Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe vorhergehender Artikel), so können wir die obigen Funktionen als Funktion phi folgendermaßen umschreiben: begin xt (1 beta1 beta2 2 ldots betaq q) wt phiq () wt end Wir werden in späteren Artikeln die phi-Funktion nutzen. Eigenschaften der zweiten Ordnung Wie bei AR (p) ist der Mittelwert eines MA (q) - Verfahrens gleich Null. Dies ist leicht zu sehen, da der Mittelwert einfach eine Summe von Mitteln von weißen Rauschtermen ist, die alle selbst Null sind. Anfang Text enspace sigma2w (1 beta21 ldots beta2q) Ende Text enspace rhok links 1 Text enspace k 0 Summe beta beta / sumq beta2i Text enspace k 1, ldots, q 0 Text enspace k gt q Ende rechts. Wo beta0 1. Wurden jetzt einige simulierte Daten generieren und verwenden, um correlograms zu erstellen. Dies wird die obige Formel für rhok etwas konkreter machen. Simulationen und Correlogramme MA (1) Beginnen wir mit einem MA (1) - Prozess. Wenn wir beta1 0.6 setzen, erhalten wir das folgende Modell: Wie bei den AR (p) - Modellen im vorherigen Artikel können wir R verwenden, um eine solche Reihe zu simulieren und dann das Korrelogramm zu zeichnen. Da wir in der vorigen Zeitreihenanalyse eine Reihe von Übungen durchführen, werde ich den R-Code vollständig schreiben, anstatt ihn aufzuteilen: Die Ausgabe ist wie folgt: Wie wir oben in der Formel für rhok gesehen haben , Für k gt q sollten alle Autokorrelationen Null sein. Da q 1 ist, sollten wir einen signifikanten Peak bei k1 und dann danach signifikante Peaks sehen. Aufgrund der Stichprobenvorhersage sollten wir jedoch erwarten, dass 5 (marginal) signifikante Peaks auf einer Stichproben-Autokorrelationskurve zu sehen sind. Genau das zeigt uns das Korrelogramm. Wir haben einen signifikanten Peak bei k1 und dann unbedeutende Peaks für k gt 1, außer bei k4, wo wir einen marginell signifikanten Peak haben. Tatsächlich ist dies eine nützliche Möglichkeit, zu sehen, ob ein MA (q) - Modell geeignet ist. Durch Betrachten des Korrelogramms einer bestimmten Reihe können wir sehen, wie viele sequenzielle Nicht-Null-Verzögerungen existieren. Wenn q solche Lags existieren, dann können wir legitimerweise versuchen, ein MA (q) - Modell an eine bestimmte Serie anzupassen. Da wir Beweise aus unseren simulierten Daten eines MA (1) - Prozesses haben, sollten wir nun versuchen, ein MA (1) - Modell an unsere simulierten Daten anzupassen. Leider gibt es keinen äquivalenten ma Befehl zum autoregressiven Modell ar Befehl in R. Stattdessen müssen wir den allgemeineren arima Befehl benutzen und die autoregressiven und integrierten Komponenten auf Null setzen. Dazu erstellen wir einen 3-Vektor und setzen die ersten beiden Komponenten (die autogressiven und integrierten Parameter) auf Null: Wir erhalten eine nützliche Ausgabe aus dem Befehl arima. Erstens können wir sehen, dass der Parameter als Hut 0.602 geschätzt wurde, der sehr nahe am wahren Wert von beta1 0,6 liegt. Zweitens sind die Standardfehler bereits für uns berechnet, so dass es einfach ist, Konfidenzintervalle zu berechnen. Drittens erhalten wir eine geschätzte Varianz, Log-Likelihood und Akaike Information Criterion (notwendig für Modellvergleich). Der Hauptunterschied zwischen arima und ar ist, dass arima einen Intercept-Term schätzt, da er den Mittelwert der Serie nicht subtrahiert. Daher müssen wir vorsichtig sein, wenn wir Vorhersagen mit dem Befehl arima durchführen. Nun wieder auf diesen Punkt später. Wie ein schneller Check wurden, um Konfidenzintervalle für Hut zu berechnen: Wir können sehen, dass die 95 Konfidenzintervall den wahren Parameterwert von beta1 0,6 enthält und so können wir beurteilen, das Modell eine gute Passform. Offensichtlich sollte das erwartet werden, da wir die Daten an erster Stelle simuliert haben. Wie ändern sich die Dinge, wenn wir das Vorzeichen von beta1 auf -0.6 ändern, können wir die gleiche Analyse durchführen: Die Ausgabe ist wie folgt: Wir können sehen, dass wir bei k1 einen signifikanten Wert haben Peak im Korrelogramm, mit der Ausnahme, dass es eine negative Korrelation zeigt, wie es ein MA (1) - Modell mit negativem ersten Koeffizienten erwartet. Wiederum sind alle Peaks jenseits von k1 unbedeutend. Ermöglicht ein MA (1) - Modell und schätzen den Parameter: Hut -0.730, was eine kleine Unterbewertung von beta1 -0.6 ist. Schließlich können wir das Konfidenzintervall berechnen: Wir können sehen, dass der wahre Parameterwert von beta1-0.6 innerhalb des 95 Konfidenzintervalls enthalten ist, was uns einen guten Modell-Fit zeigt. MA (3) Durchläuft das gleiche Verfahren für ein MA (3) - Verfahren. Diesmal sollten signifikante Peaks bei k in und unbedeutende Peaks für kgt 3 erwartet werden. Wir verwenden die folgenden Koeffizienten: beta1 0,6, beta2 0,4 und beta3 0,2. Wir können einen MA (3) Prozess von diesem Modell simulieren. Ive erhöhte die Anzahl der zufälligen Proben auf 1000 in dieser Simulation, was es leichter macht, die wahre Autokorrelationsstruktur zu sehen, und zwar auf Kosten der Herstellung der Originalreihe schwerer zu interpretieren: Die Ausgabe ist wie folgt: Wie erwartet sind die ersten drei Spitzen signifikant . Jedoch ist so das vierte. Aber wir können legitim vorschlagen, dass dies auf eine Stichprobe zurückzuführen ist, da wir erwarten, dass 5 der Peaks signifikant über kq liegen. Nun kann ein MA (3) - Modell an die Daten angepasst werden, um zu versuchen, Parameter zu schätzen: Die Schätzwerte Hut 0,544, Hut 0,345 und Hut 0,228 sind nahe an den wahren Werten von beta10,6, beta20,4 bzw. beta30,3. Wir können auch Konfidenzintervalle mit den jeweiligen Standardfehlern erzeugen: In jedem Fall enthalten die 95 Konfidenzintervalle den wahren Parameterwert und wir können schließen, dass wir, wie zu erwarten, gut mit unserem MA (3) - Modell übereinstimmen. Finanzdaten In Teil 1 betrachteten wir Amazon Inc. (AMZN) und den SampP500 US Equity Index. Wir passten das AR (p) - Modell an beide an und fanden, dass das Modell nicht in der Lage war, die Komplexität der seriellen Korrelation effektiv zu erfassen, vor allem im Guss des SampP500, wo Langzeitgedächtniseffekte zu sein scheinen. Ich wont plot die Diagramme wieder für die Preise und Autokorrelation, statt Ill weisen Sie auf die vorherige Post. Amazon Inc. (AMZN) Beginnen wir mit dem Versuch, eine Auswahl von MA (q) - Modellen an AMZN, nämlich mit q in passen. Wie in Teil 1, verwenden Sie quantmod, um die täglichen Preise für AMZN herunterzuladen und sie dann in ein Protokoll umzuwandeln, um Strom von Schlusskursen zurückzugeben: Jetzt können wir den Befehl arima verwenden, um MA (1), MA zu passen (2) und MA (3) - Modellen und schätzen dann die Parameter von jedem. Für MA (1) haben wir: Wir können die Residuen der täglichen Logarithmen und des angepassten Modells darstellen: Beachten Sie, dass wir einige signifikante Peaks bei den Lags k2, k11, k16 und k18 haben, was anzeigt, dass das MA (1) - Modell ist Unwahrscheinlich, dass eine gute Passform für das Verhalten der AMZN-Log-Rückkehr, da dies nicht aussehen wie eine Verwirklichung von weißem Rauschen. Lets try ein MA (2) - Modell: Beide Schätzungen für die Beta-Koeffizienten sind negativ. Wir können die Residuen wieder zeichnen: Wir können sehen, dass es fast Null Autokorrelation in den ersten paar Verzögerungen. Allerdings haben wir fünf marginale signifikante Peaks bei den Verzögerungen k12, k16, k19, k25 und k27. Dies ist naheliegend, dass das MA (2) - Modell viel von der Autokorrelation erfasst, aber nicht alle Langzeitspeicher-Effekte. Wie sieht es mit einem MA (3) - Modell aus? Wiederum können die Residuen geplottet werden: Das MA (3) Residualplot sieht fast identisch mit dem MA (2) - Modell aus. Dies ist nicht verwunderlich, wie das Hinzufügen eines neuen Parameters zu einem Modell, scheinbar erklärt hat viel von den Korrelationen bei kürzeren Verzögerungen, aber das hat nicht viel Einfluss auf die längerfristigen Verzögerungen. Alle diese Beweise deuten darauf hin, dass ein MA (q) - Modell ist unwahrscheinlich, dass es nützlich sein, zu erklären, alle der seriellen Korrelation in Isolation. Zumindest für AMZN. SampP500 Wenn Sie sich erinnern, in Teil 1 sahen wir, dass die erste Reihenfolge differenzierte tägliche Log Rückkehr Struktur des SampP500 besaß viele signifikante Peaks bei verschiedenen Lags, sowohl kurz als auch lang. Dies zeigte sowohl die bedingte Heteroskedastizität (d. H. Die Volatilitäts-Clusterbildung) als auch die Langzeitspeicher-Effekte. Es führte zu dem Schluss, dass das AR (p) - Modell nicht ausreicht, um die gesamte vorhandene Autokorrelation zu erfassen. Wie wir oben gesehen haben, reicht das MA (q) - Modell nicht aus, um zusätzliche Serienkorrelationen in den Resten des eingebauten Modells auf die differenzierten täglichen Log-Preisreihen erster Ordnung zu erfassen. Wir werden nun versuchen, das MA (q) - Modell an den SampP500 anzupassen. Man könnte fragen, warum wir dies tun, wenn wir wissen, dass es unwahrscheinlich, dass eine gute Passform ist. Das ist eine gute Frage. Die Antwort ist, dass wir genau sehen müssen, wie es nicht eine gute Passform ist, denn dies ist der ultimative Prozess, dem wir folgen werden, wenn wir auf sehr viel anspruchsvollere Modelle stoßen, die möglicherweise schwerer zu interpretieren sind. Lets beginnen mit dem Erhalten der Daten und die Umwandlung in eine erste Reihenfolge differenzierte Reihe von logarithmisch umgewandelt täglichen Schlusskurse wie im vorherigen Artikel: Wir werden jetzt ein MA (1), MA (2) und MA (3) - Modell zu passen Die Serie, wie wir oben für AMZN. Beginnen wir mit MA (1): Machen wir eine Auftragung der Residuen dieses angepassten Modells: Der erste signifikante Peak tritt bei k2 auf, aber es gibt viel mehr bei k in. Dies ist eindeutig keine Verwirklichung von weißem Rauschen und deshalb müssen wir das MA (1) - Modell als eine für den SampP500 geeignete Potenz ablehnen. (2) Wiederum lassen sich die Residuen dieses angepassten MA (2) - Modells machen: Während der Peak bei k2 verschwunden ist (wie wir es erwarten), bleiben wir mit den signifikanten Peaks bei Viele längere Verzögerungen in den Resten. Noch einmal, finden wir das MA (2) - Modell ist nicht eine gute Passform. Für das MA (3) - Modell ist zu erwarten, dass bei k3 weniger serielle Korrelation als bei der MA (2) zu sehen ist, doch sollten wir auch hier keine Reduzierung weiterer Verzögerungen erwarten. Schließlich lässt sich eine Auftragung der Residuen dieses angepassten MA (3) - Modells machen: Genau das sehen wir im Korrelogramm der Residuen. Daher ist die MA (3), wie bei den anderen Modellen oben, nicht gut für den SampP500 geeignet. Die nächsten Schritte Weve untersuchte nun zwei große Zeitreihenmodelle im Detail, nämlich das autogressive Modell der Ordnung p, AR (p) und dann den Moving Average der Ordnung q, MA (q). Wir haben gesehen, dass sie beide in der Lage sind, einige der Autokorrelation in den Resten der ersten Ordnung differenzierte tägliche Log-Preise von Aktien und Indizes weg zu erklären, aber Volatilitäts-Clustering und Lang-Speicher-Effekte bestehen. Es ist endlich Zeit, unsere Aufmerksamkeit auf die Kombination dieser beiden Modelle, nämlich der Autoregressive Moving Average der Ordnung p, q, ARMA (p, q) zu lenken, um zu sehen, ob es die Situation weiter verbessern wird. Allerdings müssen wir warten, bis der nächste Artikel für eine vollständige Diskussion Michael Halls-Moore Mike ist der Gründer von QuantStart und hat in der quantitativen Finanzindustrie für die letzten fünf Jahre, in erster Linie als Quant-Entwickler und später als Quant Trader-Beratung für Hedge-Fonds. Autoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 1 Von Michael Halls-Moore am 17. August 2015 Im letzten Artikel sahen wir zufällige Wanderungen und weißes Rauschen als grundlegende Zeitreihenmodelle Für bestimmte Finanzinstrumente wie Tagesaktien und Aktienindexpreise. Wir fanden, dass in einigen Fällen ein zufälliges Wanderungsmodell nicht ausreicht, um das vollständige Autokorrelationsverhalten des Instruments zu erfassen, das anspruchsvollere Modelle motiviert. In den nächsten Artikeln werden wir drei Modelltypen diskutieren, nämlich das Autoregressive (AR) - Modell der Ordnung p, das Moving Average (MA) - Modell der Ordnung q und das gemischte Autogressive Moving Average (ARMA) - Modell der Ordnung p , Q. Diese Modelle werden uns helfen zu erfassen oder zu erklären, mehr der seriellen Korrelation in einem Instrument. Letztlich werden sie uns ein Mittel zur Prognose der künftigen Preise bieten. Es ist jedoch bekannt, dass finanzielle Zeitreihen eine Eigenschaft besitzen, die als Volatilitäts-Clustering bekannt ist. Das heißt, die Flüchtigkeit des Instruments ist nicht zeitlich konstant. Der technische Begriff für dieses Verhalten wird als bedingte Heteroskedastizität bezeichnet. Da die AR-, MA - und ARMA-Modelle nicht bedingt heteroskedastisch sind, dh sie nicht das Volatilitäts-Clustering berücksichtigen, benötigen wir letztlich ein anspruchsvolleres Modell für unsere Prognosen. Zu diesen Modellen gehören das Autogressive Conditional Heteroskedastic (ARCH) Modell und das Generalized Autogressive Conditional Heteroskedastic (GARCH) Modell und die vielen Varianten davon. GARCH ist in Quantfinance besonders bekannt und wird vor allem für finanzielle Zeitreihensimulationen als Mittel zur Risikoabschätzung eingesetzt. Wie bei allen QuantStart-Artikeln möchte ich aber diese Modelle aus einfacheren Versionen aufbauen, damit wir sehen können, wie jede neue Variante unsere Vorhersagefähigkeit ändert. Trotz der Tatsache, dass AR, MA und ARMA relativ einfache Zeitreihenmodelle sind, sind sie die Grundlage für kompliziertere Modelle wie den Autoregressive Integrated Moving Average (ARIMA) und die GARCH-Familie. Daher ist es wichtig, dass wir sie studieren. Einer unserer ersten Trading-Strategien in der Zeitreihe Artikel-Serie wird es sein, ARIMA und GARCH zu kombinieren, um die Preise n Perioden im Voraus vorherzusagen. Allerdings müssen wir warten, bis weve diskutiert sowohl ARIMA und GARCH separat, bevor wir sie auf eine echte Strategie anwenden Wir werden in diesem Artikel werden wir einige neue Zeitreihen-Konzepte, die gut für die restlichen Methoden, nämlich streng zu skizzieren Stationarität und dem Akaike-Informationskriterium (AIC). Im Anschluss an diese neuen Konzepte werden wir dem traditionellen Muster für das Studium neuer Zeitreihenmodelle folgen: Begründung - Die erste Aufgabe ist es, einen Grund dafür zu liefern, warum sich ein bestimmtes Modell als Quants interessierte. Warum stellen wir das Zeitreihenmodell vor Welche Auswirkungen kann es erfassen Was gewinnen wir (oder verlieren), indem wir zusätzliche Komplexität hinzufügen Definition - Wir müssen die vollständige mathematische Definition (und damit verbundene Notation) des Zeitreihenmodells zur Minimierung bereitstellen Jede Unklarheit. Eigenschaften der zweiten Ordnung - Wir diskutieren (und in einigen Fällen) die Eigenschaften zweiter Ordnung des Zeitreihenmodells, das sein Mittel, seine Varianz und seine Autokorrelationsfunktion enthält. Correlogram - Wir verwenden die Eigenschaften zweiter Ordnung, um ein Korrektramm einer Realisierung des Zeitreihenmodells zu zeichnen, um sein Verhalten zu visualisieren. Simulation - Wir simulieren Realisierungen des Zeitreihenmodells und passen dann das Modell an diese Simulationen an, um sicherzustellen, dass wir genaue Implementierungen haben und den Anpassungsprozess verstehen. Echte Finanzdaten - Wir passen das Zeitreihenmodell auf echte Finanzdaten an und betrachten das Korrektramm der Residuen, um zu sehen, wie das Modell die serielle Korrelation in der ursprünglichen Serie berücksichtigt. Vorhersage - Wir erstellen n-Schritt-Voraus-Prognosen des Zeitreihenmodells für besondere Realisierungen, um letztendlich Handelssignale zu erzeugen. Fast alle Artikel, die ich auf Zeitreihenmodellen schreibe, werden in dieses Muster fallen und es wird uns erlauben, die Unterschiede zwischen jedem Modell leicht zu vergleichen, da wir weitere Komplexität hinzufügen. Wurden zu Beginn mit Blick auf strenge Stationarität und die AIC. Strengst stationär Wir haben die Definition der Stationarität in dem Artikel über die serielle Korrelation. Da wir jedoch in die Reichweite vieler Finanzserien mit verschiedenen Frequenzen treten, müssen wir sicherstellen, dass unsere (eventuellen) Modelle die zeitlich variierende Volatilität dieser Serien berücksichtigen. Insbesondere müssen wir ihre Heteroskedastizität berücksichtigen. Wir werden auf dieses Problem stoßen, wenn wir versuchen, bestimmte Modelle zu historischen Serien zu passen. Grundsätzlich können nicht alle seriellen Korrelationen in den Resten von eingebauten Modellen berücksichtigt werden, ohne Heteroskedastizität zu berücksichtigen. Das bringt uns zurück zur Stationarität. Eine Serie ist nicht stationär in der Varianz, wenn sie zeitvariable Volatilität hat, per Definition. Dies motiviert eine rigorosere Definition der Stationarität, nämlich eine strenge Stationarität: Strengst stationäre Serie Ein Zeitreihenmodell ist streng stationär, wenn die gemeinsame statistische Verteilung der Elemente x, ldots, x die gleiche ist wie die von xm, ldots, xm, Für alle ti, m. Man kann an diese Definition nur denken, daß die Verteilung der Zeitreihen für jede zeitliche Verschiebung unverändert bleibt. Insbesondere sind das Mittel und die Varianz rechtzeitig für eine streng stationäre Folge konstant und die Autokovarianz zwischen xt und xs (nur) hängt nur von der absoluten Differenz von t und s, t-s ab. In zukünftigen Beiträgen werden wir streng stationäre Serien besprechen. Akaike Information Criterion Ich erwähnte in früheren Artikeln, dass wir schließlich zu prüfen, wie die Wahl zwischen getrennten besten Modelle. Dies gilt nicht nur für die Zeitreihenanalyse, sondern auch für das maschinelle Lernen und generell für die Statistik im Allgemeinen. Die beiden Hauptmethoden (vorläufig) sind das Akaike Information Criterion (AIC) und das Bayesian Information Criterion (wie wir mit unseren Artikeln über Bayesian Statistics weiter vorankommen). Nun kurz die AIC, wie es in Teil 2 des ARMA Artikel verwendet werden. AIC ist im Wesentlichen ein Hilfsmittel zur Modellauswahl. Das heißt, wenn wir eine Auswahl von statistischen Modellen (einschließlich Zeitreihen) haben, dann schätzt die AIC die Qualität jedes Modells, relativ zu den anderen, die wir zur Verfügung haben. Es basiert auf Informationstheorie. Das ist ein sehr interessantes, tiefes Thema, das wir leider nicht in zu viel Detail gehen können. Es versucht, die Komplexität des Modells, die in diesem Fall bedeutet die Anzahl der Parameter, wie gut es passt die Daten. Lets eine Definition: Akaike Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell, das k Parameter hat, und L maximiert die Wahrscheinlichkeit. Dann ist das Akaike Information Criterion gegeben durch: Das bevorzugte Modell, aus einer Auswahl von Modellen, hat die minium AIC der Gruppe. Sie können sehen, dass die AIC wächst mit der Anzahl der Parameter, k, erhöht, aber reduziert wird, wenn die negative Log-Likelihood erhöht. Im Wesentlichen bestraft sie Modelle, die übermäßig sind. Wir werden AR, MA und ARMA Modelle von unterschiedlichen Aufträgen erstellen und eine Möglichkeit, das beste Modell zu wählen, das zu einem bestimmten Datensatz passt, ist, die AIC zu verwenden. Dies ist, was gut tun, im nächsten Artikel, vor allem für ARMA Modelle. Autoregressive (AR) Modelle der Ordnung p Das erste Modell, das die Grundlage von Teil 1 bildet, ist das autoregressive Modell der Ordnung p, oft verkürzt zu AR (p). Begründung Im vorherigen Artikel betrachteten wir den zufälligen Weg. Wobei jeder Term xt nur von dem vorherigen Term x und einem stochastischen weißen Rauschterm abhängt, wt: Das autoregressive Modell ist einfach eine Erweiterung des zufälligen Weges, der Terme weiter zurück in der Zeit enthält. Die Struktur des Modells ist linear. Das heißt, das Modell hängt linear von den vorherigen Bedingungen ab, wobei für jeden Term Koeffizienten vorliegen. Dies ist, wo die regressive kommt aus der autoregressive. Es ist im Wesentlichen ein Regressionsmodell, bei dem die vorherigen Begriffe die Prädiktoren sind. Autoregressives Modell der Ordnung p Ein Zeitreihenmodell ist ein autoregressives Modell der Ordnung p. AR (p), wenn: begin xt alpha1 x ldots alphap x wt sum p alpha x wt end Wo ist weißes Rauschen und alpha in mathbb, mit alphap neq 0 für einen autoregressiven p-order Prozess. Wenn wir den Backward Shift Operator betrachten. (Siehe vorheriger Artikel), dann können wir das obige als eine Funktion theta folgendermaßen umschreiben: begin thetap () xt (1 - alpha1 - alpha2 2 - ldots - alphap) xt wt Ende Vielleicht das erste, was über das AR (p) Ist, dass ein zufälliger Weg einfach AR (1) mit alpha1 gleich Eins ist. Wie oben erwähnt, ist das autogressive Modell eine Erweiterung des zufälligen Weges, so dass dies sinnvoll ist. Es ist einfach, Vorhersagen mit dem AR (p) - Modell zu jeder Zeit t vorzunehmen, sobald wir die alphai-Koeffizienten, unsere Schätzung, bestimmt haben Wird einfach: anfangen Hut t alpha1 x ldots alphap x end So können wir n-Schritt voraus Prognosen durch die Herstellung Hut t, Hut, Hut, etc. bis zu Hut. Tatsächlich werden wir, wenn wir die ARMA-Modelle in Teil 2 betrachten, die R-Vorhersagefunktion verwenden, um Prognosen (zusammen mit Standardfehler-Konfidenzintervallbändern) zu erzeugen, die uns helfen, Handelssignale zu erzeugen. Stationarität für autoregressive Prozesse Eines der wichtigsten Aspekte des AR (p) - Modells ist, dass es nicht immer stationär ist. Tatsächlich hängt die Stationarität eines bestimmten Modells von den Parametern ab. Ive berührte dieses vorher in einem vorhergehenden Artikel. Um zu bestimmen, ob ein AR (p) - Prozeß stationär ist oder nicht, müssen wir die charakteristische Gleichung lösen. Die charakteristische Gleichung ist einfach das autoregressive Modell, geschrieben in Rückwärtsverschiebung Form, auf Null gesetzt: Wir lösen diese Gleichung für. Damit das bestimmte autoregressive Verfahren stationär ist, brauchen wir alle Absolutwerte der Wurzeln dieser Gleichung, um Eins zu übersteigen. Dies ist eine äußerst nützliche Eigenschaft und ermöglicht es uns schnell zu berechnen, ob ein AR (p) - Prozeß stationär ist oder nicht. Wir betrachten einige Beispiele, um diese Idee konkret zu machen: Random Walk - Der AR (1) Prozess mit alpha1 1 hat die charakteristische Gleichung theta 1 -. Offensichtlich hat diese Wurzel 1 und als solche ist nicht stationär. AR (1) - Wenn wir alpha1 frac wählen, erhalten wir xt frac x wt. Dies ergibt eine charakteristische Gleichung von 1 - frac 0, die eine Wurzel von 4 gt 1 hat und somit dieses AR (1) - Verfahren stationär ist. AR (2) - Wenn wir alpha1 alpha2 frac setzen, erhalten wir xt frac x frac x wt. Seine charakteristische Gleichung wird - frac () () 0, die zwei Wurzeln von 1, -2 ergibt. Da es sich um eine Einheitswurzel handelt, handelt es sich um eine nichtstationäre Serie. Andere AR (2) - Serien können jedoch stationär sein. Eigenschaften der zweiten Ordnung Der Mittelwert eines AR (p) - Prozesses ist Null. Allerdings sind die Autokovarianzen und Autokorrelationen durch rekursive Funktionen, bekannt als die Yule-Walker-Gleichungen gegeben. Die vollständigen Eigenschaften sind unten angegeben: begin mux E (xt) 0 end begin gammak sum p alpha gamma, enspace k 0 end begin rhok sum p alphai rho, enspace k 0 end Beachten Sie, dass es notwendig ist, die alpha-Parameterwerte vor zu kennen Berechnen der Autokorrelationen. Nachdem wir die Eigenschaften zweiter Ordnung angegeben haben, können wir verschiedene Ordnungen von AR (p) simulieren und die entsprechenden Korrektramme darstellen. Simulationen und Correlogramme AR (1) Beginnt mit einem AR (1) - Prozess. Dies ist ähnlich einem zufälligen Weg, außer dass alpha1 nicht gleich Eins haben muss. Unser Modell wird alpha1 0,6 haben. Der R-Code für die Erzeugung dieser Simulation ist wie folgt gegeben: Beachten Sie, dass unsere for-Schleife von 2 bis 100, nicht 1 bis 100, als xt-1 ausgeführt wird, wenn t0 nicht indexierbar ist. Ähnlich für AR (p) Prozesse höherer Ordnung muss t in dieser Schleife von p bis 100 reichen. Wir können die Realisierung dieses Modells und seines zugehörigen Korrelogramms mit Hilfe der Layout-Funktion darstellen: Lasst uns jetzt versuchen, einen AR (p) - Prozeß an die soeben erzeugten simulierten Daten anzupassen, um zu sehen, ob wir die zugrunde liegenden Parameter wiederherstellen können. Sie können daran erinnern, dass wir ein ähnliches Verfahren in dem Artikel über weiße Rauschen und zufällige Wanderungen durchgeführt. Wie sich herausstellt, bietet R einen nützlichen Befehl ar, um autoregressive Modelle zu passen. Wir können diese Methode verwenden, um uns zuerst die beste Ordnung p des Modells zu erzählen (wie durch die AIC oben bestimmt) und liefern uns mit Parameterschätzungen für das alphai, die wir dann verwenden können, um Konfidenzintervalle zu bilden. Für die Vollständigkeit können wir die x-Reihe neu erstellen: Jetzt verwenden wir den ar-Befehl, um ein autoregressives Modell an unseren simulierten AR (1) - Prozess anzupassen, wobei die maximale Wahrscheinlichkeitsschätzung (MLE) als Anpassungsverfahren verwendet wird. Wir werden zunächst die beste erhaltene Ordnung extrahieren: Der ar Befehl hat erfolgreich festgestellt, dass unser zugrunde liegendes Zeitreihenmodell ein AR (1) Prozess ist. Wir erhalten dann die Alpha-Parameter (s) Schätzungen: Die MLE-Prozedur hat eine Schätzung erzeugt, Hut 0,523, die etwas niedriger als der wahre Wert von alpha1 0,6 ist. Schließlich können wir den Standardfehler (mit der asymptotischen Varianz) verwenden, um 95 Konfidenzintervalle um den / die zugrunde liegenden Parameter zu konstruieren. Um dies zu erreichen, erstellen wir einfach einen Vektor c (-1,96, 1,96) und multiplizieren ihn dann mit dem Standardfehler: Der wahre Parameter fällt in das 95 Konfidenzintervall, da wir von der Tatsache erwarten, dass wir die Realisierung aus dem Modell spezifisch generiert haben . Wie wäre es, wenn wir die alpha1 -0.6 ändern, können wir wie folgt ein AR (p) - Modell mit ar: Wiederherstellen wir die richtige Reihenfolge des Modells, mit einem sehr guten Schätzung Hut -0.597 von alpha1-0.6. Wir sehen auch, dass der wahre Parameter wieder innerhalb des Konfidenzintervalls liegt. AR (2) Wir können unseren autoregressiven Prozessen durch Simulation eines Modells der Ordnung 2 etwas mehr Komplexität hinzufügen. Insbesondere setzen wir alpha10.666, setzen aber auch alpha2 -0.333. Heres den vollständigen Code, um die Realisierung zu simulieren und zu plotten, sowie das Korrelogram für eine solche Serie: Wie zuvor sehen wir, dass sich das Korrelogramm signifikant von dem des weißen Rauschens unterscheidet, wie man es erwarten kann. Es gibt statistisch signifikante Peaks bei k1, k3 und k4. Wieder einmal wollten wir den ar-Befehl verwenden, um ein AR (p) - Modell zu unserer zugrundeliegenden AR (2) - Ausführung zu passen. Die Prozedur ist ähnlich wie bei der AR (1) - Sitzung: Die korrekte Reihenfolge wurde wiederhergestellt und die Parameterschätzungen Hut 0.696 und Hut -0.395 sind nicht zu weit weg von den wahren Parameterwerten von alpha10.666 und alpha2-0.333. Beachten Sie, dass wir eine Konvergenz-Warnmeldung erhalten. Beachten Sie auch, dass R tatsächlich die arima0-Funktion verwendet, um das AR-Modell zu berechnen. AR (p) - Modelle sind ARIMA (p, 0, 0) - Modelle und somit ein AR-Modell ein Spezialfall von ARIMA ohne Moving Average (MA) - Komponente. Nun auch mit dem Befehl arima, um Konfidenzintervalle um mehrere Parameter zu erstellen, weshalb wir vernachlässigt haben, es hier zu tun. Nachdem wir nun einige simulierte Daten erstellt haben, ist es an der Zeit, die AR (p) - Modelle auf finanzielle Asset-Zeitreihen anzuwenden. Financial Data Amazon Inc. Lets beginnen mit dem Erwerb der Aktienkurs für Amazon (AMZN) mit quantmod wie im letzten Artikel: Die erste Aufgabe ist es, immer den Preis für eine kurze visuelle Inspektion. In diesem Fall auch die täglichen Schlusskurse: Youll bemerken, dass quantmod einige Formatierungen für uns, nämlich das Datum, und ein etwas hübscheres Diagramm als die üblichen R-Diagramme hinzufügt: Wir werden jetzt die logarithmische Rückkehr von AMZN und dann die erste nehmen Um die ursprüngliche Preisreihe von einer nichtstationären Serie auf eine (potentiell) stationäre zu konvertieren. Dies ermöglicht es uns, Äpfel mit Äpfeln zwischen Aktien, Indizes oder anderen Vermögenswerten zu vergleichen, für die Verwendung in späteren multivariaten Statistiken, wie bei der Berechnung einer Kovarianzmatrix. Wenn Sie eine ausführliche Erklärung, warum Protokoll Rückkehr bevorzugen möchten, werfen Sie einen Blick auf diesen Artikel über bei Quantivity. Erstellt eine neue Serie, amznrt. Um unsere differenzierten Logarithmen zurückzuhalten: Wieder einmal können wir die Serie darstellen: In diesem Stadium wollen wir das Korrektramm zeichnen. Sie suchten, um zu sehen, ob die differenzierte Reihe wie weißes Rauschen aussieht. Wenn es nicht dann gibt es unerklärliche serielle Korrelation, die durch ein autoregressives Modell erklärt werden könnte. Wir bemerken einen statistisch signifikanten Peak bei k2. Daher gibt es eine vernünftige Möglichkeit der unerklärlichen seriellen Korrelation. Seien Sie sich jedoch bewusst, dass dies aufgrund der Stichprobe. Als solches können wir versuchen, ein AR (p) - Modell an die Serie anzubringen und Konfidenzintervalle für die Parameter zu erzeugen: Die Anpassung des ar-autoregressiven Modells an die erste Reihe differenzierte Serien von Logarithmen erzeugt ein AR (2) - Modell mit Hut -0,0278 Und hat -0.0687. Ive auch die aysmptotische Varianz, so dass wir berechnen können Standard-Fehler für die Parameter und erzeugen Vertrauen Intervalle. Wir wollen sehen, ob null Teil des 95-Konfidenzintervalls ist, als ob es ist, es reduziert unser Vertrauen, dass wir ein echtes zugrunde liegendes AR (2) - Verfahren für die AMZN-Serie haben. Um die Konfidenzintervalle auf der 95-Ebene für jeden Parameter zu berechnen, verwenden wir die folgenden Befehle. Wir nehmen die Quadratwurzel des ersten Elements der asymptotischen Varianzmatrix auf, um einen Standardfehler zu erzeugen und dann Konfidenzintervalle zu erzeugen, indem wir sie mit -1,96 bzw. 1,96 für die 95-Ebene multiplizieren: Beachten Sie, dass dies bei Verwendung der Arima-Funktion einfacher wird , Aber gut bis Teil 2 warten, bevor es richtig eingeführt. Somit können wir sehen, dass für alpha1 Null innerhalb des Konfidenzintervalls enthalten ist, während für alpha2 Null nicht im Konfidenzintervall enthalten ist. Daher sollten wir sehr vorsichtig sein, wenn wir denken, dass wir tatsächlich ein zugrundeliegendes generatives AR (2) - Modell für AMZN haben. Insbesondere berücksichtigen wir, dass das autoregressive Modell nicht das Volatilitäts-Clustering berücksichtigt, was zu einer Clusterbildung der seriellen Korrelation in finanziellen Zeitreihen führt. Wenn wir die ARCH - und GARCH-Modelle in späteren Artikeln betrachten, werden wir dies berücksichtigen. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel misst eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander getrennt sind, über die gesamte Reihe miteinander korrelieren. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion der so genannten autoregressiven und gleitenden Durchschnittsparameter zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, daß jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept dahinter ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die sich auf den umgekehrten Prozess der Differenzierung bezieht, um die Prognose zu erzeugen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer gleitenden mittleren Komponente erster Ordnung haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter eingeschlossen werden sollen. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Anmerkung: Die Constant-Eigenschaft eines arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Stabil ist. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Zusätzlich ist das Verfahren kausal, vorausgesetzt das MA-Polynom ist invertierbar. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox forciert Stabilität und Invertierbarkeit von ARMA Prozessen. Wenn Sie ein ARMA-Modell mit Arima angeben. Erhalten Sie einen Fehler, wenn Sie Koeffizienten eingeben, die nicht einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom entsprechen. Ähnlich erfordert die Schätzung während der Schätzung Stationaritäts - und Invertibilitätsbeschränkungen. Literatur 1 Wold, H. Eine Studie in der Analyse stationärer Zeitreihen. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr Land Ich bin wirklich versuchen, aber kämpfen, zu verstehen, wie Autoregressive und Moving Average arbeiten. Ich bin ziemlich schrecklich mit Algebra und Blick auf es nicht wirklich verbessern mein Verständnis von etwas. Was ich wirklich lieben würde, ist ein extrem einfaches Beispiel für 10 zeitabhängige Beobachtungen, damit ich sehen kann, wie sie funktionieren. So können Sie sagen, dass Sie die folgenden Datenpunkte des Goldpreises haben: Zum Beispiel, was wäre der Moving Average von Lag 2, MA (2), oder MA (1) und AR (1) oder AR (2) Ich lernte traditionell über Moving Average so etwas wie: Aber wenn man ARMA-Modelle betrachtet, wird MA als eine Funktion der vorherigen Fehler-Begriffe erklärt, die ich nicht bekommen kann meinen Kopf. Ist es nur eine fancier Art und Weise der Berechnung der gleiche Sache fand ich diesen Beitrag hilfreich: (Wie SARIMAX intuitiv zu verstehen), aber Whist die Algebra hilft, kann ich nicht sehen, etwas wirklich klar, bis ich ein vereinfachtes Beispiel davon zu sehen. Angesichts der Goldpreisdaten, würden Sie zunächst schätzen das Modell und dann sehen, wie es funktioniert (Impulsantwort-Prognosen). Vielleicht sollten Sie verengen Sie Ihre Frage nur auf den zweiten Teil (und verlassen Schätzung beiseite). Das heißt, Sie würden ein AR (1) oder MA (1) oder was auch immer Modell (z. B. xt0.5 x varepsilont) und fragen Sie uns, wie funktioniert dieses Modell arbeiten. Ndash Richard Hardy Antwort # 2 am: April 18, 2010, um 12:58 Uhr Antwort Bei jedem AR (q) - Modell ist die einfache Möglichkeit, den Parameter (s) zu schätzen ist OLS verwenden - und führen Sie die Regression von: pricet beta0 beta1 cdot Preis dotso betaq cdot Preis Lets (In R): (Okay, also ich betrogen ein wenig und verwendet die Arima-Funktion in R, aber es liefert die gleichen Schätzungen wie die OLS-Regression - versuchen Sie es). Nun kann man sich das MA (1) - Modell ansehen. Jetzt unterscheidet sich das MA-Modell vom AR-Modell. Die MA ist gewichteten Durchschnitt der vergangenen Perioden Fehler, wo, wie die AR-Modell, um die previoues Perioden tatsächlichen Datenwerte verwendet. Die MA (1): pricet mu wt theta1 cdot w Wo mu ist der Mittelwert, und wt sind die Fehler-Terme - nicht der previoes Wert des Preises (wie im AR-Modell). Nun, leider, können wir nicht schätzen die Parameter durch etwas so einfach wie OLS. Ich werde nicht die Methode hier decken, aber die R-Funktion arima verwendet maximale likihood. Lets try: Hoffe, das hilft. (2) Was die Frage MA (1) betrifft. Sie sagen, der Rest ist 1.0023 für den zweiten Zeitraum. Das macht Sinn. Mein Verständnis der Rest ist it39s der Differenz zwischen dem prognostizierten Wert und dem beobachteten Wert.

Comments